257
Bitcoin Price Forecasting
Gupta, A., & Nain, H. (2021). Bitcoin price prediction using time series analysis and machine
learning techniques. In Machine Learning for Predictive Analysis (pp. 551–560).
Singapore: Springer.
Ho, W. T., & Yu, F. W. (2021). Predicting chiller system performance using ARIMA-
regression models. Journal of Building Engineering, 33, 101871.
Ibikunle, G., McGroarty, F., & Rzayev, K. (2020). More heat than light: Investor attention and
bitcoin price discovery. International Review of Financial Analysis, 69, 101459.
Ismail, M. T., Shah, N. Z. A., & Karim, S. A. A. (2021). Modeling solar radiation in pen
insular Malaysia using ARIMA model. In Clean Energy Opportunities in Tropical
Countries (pp. 53–71). Singapore: Springer.
Jalali, M. F. M., & Heidari, H. (2020). Predicting changes in Bitcoin price using grey system
theory. Financial Innovation, 6(1), 1–12.
Ji, S., Kim, J., & Im, H. (2019). A comparative study of bitcoin price prediction using deep
learning. Mathematics, 7(10), 898.
Kaggle. (2021, May 01). Bitcoin data at 1-min intervals from select exchanges, Jan 2012 to
March 2021. retrieved on 5, May’ 2021 https://www.kaggle.com/mczielinski/bitcoin-
historical-data/data
Kavasseri, R. G., & Seetharaman, K. (2009). Day-ahead wind speed forecasting using
f-ARIMA models. Renewable Energy, 34(5), 1388–1393.
Khedr, A., Arif, I., Pavijaraj, P. V., El-Bannany, M., Alhashmi, S. S. M. (2021). Cryptocurrency
price prediction using traditional statistical and machine learning techniques: A survey.
Intelligent Systems in Accounting, Finance and Management, 28. 3–34. https://doi.org/
10.1002/isaf.1488
Kinasz, W. (2021). Use of artificial neural networks and the ARIMA model for short-term
stock indices forecasts (Doctoral dissertation, Instytut Elektroenergetyki).
Liu, M. D., Ding, L., & Bai, Y. L. (2021). Application of hybrid model based on empirical
mode decomposition, novel recurrent neural networks and the ARIMA to wind speed
prediction. Energy Conversion and Management, 233, 113917.
Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-
LSTM model for cryptocurrency forecasting. Electronics, 10(3), 287.
Lv, T., Wu, Y., & Zhang, L. (2021, April). A traffic interval prediction method based on
ARIMA. Journal of Physics: Conference Series, 1880(1), 012031). IOP Publishing.
Patel, M. M., Tanwar, S., Gupta, R., & Kumar, N. (2020). A deep learning-based crypto
currency price prediction scheme for financial institutions. Journal of Information
Security and Applications, 55, 102583, ISSN 2214-2126, https://doi.org/10.1016/j.jisa.
2020.102583.
Pintelas E., Livieris I.E., Stavroyiannis S., Kotsilieris T., Pintelas P. (2020) Investigating the
problem of cryptocurrency price prediction: A deep learning approach. In Maglogiannis
I., Iliadis L., Pimenidis E. (eds.), Artificial Intelligence Applications and Innovations.
AIAI 2020. IFIP Advances in Information and Communication Technology (vol. 584).
Cham: Springer. https://doi.org/10.1007/978-3-030-49186-4_9
Poongodi, M., Vijayakumar, V., & Chilamkurti, N. (2020). Bitcoin price prediction
using ARIMA model. International Journal of Internet Technology and Secured
Transactions, 10(4), 396–406.
Rathan, K., Sai, S. V., & Manikanta, T. S. (2019, April). Crypto-currency price prediction
using decision tree and regression techniques. In 2019 3rd International Conference on
Trends in Electronics and Informatics (ICOEI) (pp. 190–194). IEEE.
Shankhdhar, A., Singh, A. K., Naugraiya, S., & Saini, P. K. (2021, April). Bitcoin price alert
and prediction system using various models. IOP Conference Series: Materials Science
and Engineering, 1131(1), 012009. IOP Publishing.